

For more such worksheets visit www.edugain.com

Choose correct answer(s) from the given choices

(1) Three friends were eating pie. Elijah ate $\frac{5}{15}$, Abigail ate $\frac{2}{3}$ and Sarah ate $\frac{2}{5}$ of a pie. In total, how much pie did these three eat?

a.
$$\frac{5}{5}$$
 b. $\frac{7}{5}$
c. $\frac{10}{5}$ **d.** $\frac{9}{5}$

(2) Add the following fractions and reduce the sum to the simplest form:

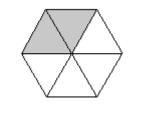
$\frac{6}{9} + \frac{3}{6}$	
a. $\frac{14}{6}$	b. $\frac{4}{7}$
c. $\frac{7}{6}$	d. $\frac{11}{13}$

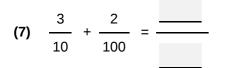
(3) David's cookie recipe calls for $\frac{3}{8}$ of a cup of sugar. How much sugar would David use to make 3 batches of cookies?

1	b. $1\frac{1}{2}$
a. $\frac{10}{10}$	b. $1{8}$
1	1
c. $\frac{-1}{8}$	d. $1\frac{1}{10}$

(4) Add $\frac{5}{9}$ and $\frac{2}{3}$ using the given model.

	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	<u>1</u> 9	
+		<u>1</u> 3			<u>1</u> 3	


a.	-				5		-	
	9	3		9		9	3	9
c.	5				d	-		14
	9							9


(5) There are 14 houses in a street and three-seventh of them have satellite TV. How many of these houses have satellite TV?

a. 10	b. 5
c. 6	d. 7

Fill in the blanks

(6) The fraction of the shaded part in the following image is _____

Answer the questions

- (8) Logan's cookie recipe calls for $\frac{8}{11}$ of a cup of sugar. How much sugar would Logan use to make 4 batches of cookies? (Simplify the answer)
- (9) Mason read $\frac{6}{11}$ of a book in two days. If Mason read $\frac{5}{11}$ of the book on the first day. What

fraction of the book he read on the second day?

(10) In a class there are 30 students. If five-tenth of these come to school by bus. How many students come to school by bus?

© 2021 Edugain (www.edugain.com). All Rights Reserved Many more such worksheets can be generated at www.edugain.com

Solutions

(1) b. $\frac{7}{5}$

Step 1

To find the total pie eaten by Elijah, Abigail and Sarah, add the pie eaten by each one of them.

Step 2

Add the fractions: $\frac{5}{15} + \frac{2}{3} + \frac{2}{5}$

Step 3

Now, to add the fractions we have to make the denominators of the fractions the same.

So, to get equivalent fractions with denominator 15, multiply $\frac{2}{5}$ by 3 and $\frac{2}{3}$ by 5.

So,
$$\frac{2 \times 3}{5 \times 3} = \frac{6}{15}$$
 and $\frac{2 \times 5}{3 \times 5} = \frac{10}{15}$

Step 4

Since, the denominators of all the fractions are the same, so add the numerators and keep the denominator the same.

So,
$$\frac{5}{15} + \frac{2}{3} + \frac{2}{5}$$

 $= \frac{5}{15} + \frac{10}{15} + \frac{6}{15}$
 $= \frac{5+10+6}{15}$
 $= \frac{21}{15}$ or $\frac{7}{5}$
Step 5
Hence, in total they ate $\frac{7}{5}$ pies

Step 1

7

The fractions $\frac{6}{9}$ and $\frac{3}{6}$ are unlike fractions as their denominators are different. We will

first convert the given fractions into equivalent like fractions.

Step 2

Let us first find the LCM of the denominators 6 and 9. The LCM is 18.

Step 3

To write $\frac{6}{9}$ as an equivalent fraction which has 18 as denominator, we need to multiply both

the numerator and denominator by $\frac{18}{9}$ = 2. So, the equivalent fraction is:

$$\frac{6 \times 2}{9 \times 2} = \frac{12}{18}$$

Step 4

Similarly, to write $\frac{3}{6}$ as an equivalent fraction which has 18 as denominator, we need to

multiply both the numerator and denominator by $\frac{18}{6}$ = 3. So, the equivalent fraction is:

 $\frac{3\times3}{6\times3} = \frac{9}{18}$

Step 5

Now, we can add the equivalent like fractions by adding the numerators together and keeping the denominator same:

 $\frac{12}{18} + \frac{9}{18} = \frac{12+9}{18} = \frac{21}{18}$

Step 6

In order to convert the fraction $\frac{21}{18}$ in the simplest/lowest form, let us divide both the

numerator and denominator by their HCF.

Step 7

The HCF of 21 and 18 is 3.

Step 8

ID : us-4-Fractions [6]

Hence, the simplest/lowest form of
$$\frac{21}{18}$$
 is $\frac{\frac{21}{3}}{\frac{18}{3}} = \frac{7}{6}$

(3) **b.** $1\frac{1}{8}$

Step 1

To find the amount of sugar used by 3 batches of cookies, multiply the amount of sugar needed to make 1 batch of cookies by 3. Thus, find $3 \times \frac{3}{8}$.

Step 2

3 can be written as $\frac{3}{1}$. Now, multiply the numerators and the denominators to find the product. Thus, $3 \times \frac{3}{8} = \frac{3}{1} \times \frac{3}{8} = \frac{3 \times 3}{1 \times 8} = \frac{9}{8}$. Now, Simplify the product: $\frac{9}{8} = 1\frac{1}{8}$. Step 3 Hence, David would use $1\frac{1}{8}$ of a cup of sugar to make 3 batches of cookies.

(4) c.
$$\frac{5}{9} + \frac{2}{3} = \frac{11}{9}$$

Step 1

The given model shows $\frac{5}{9} + \frac{2}{3}$. Now, to add the fractions, we have to make the

denominators of both the fractions the same.

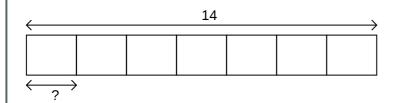
Step 2

2		6
Now, —	is the same size as	—
3		9

	$\frac{1}{3}$		$\frac{1}{3}$			
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	

Step 3

Thus, $\frac{5}{9} + \frac{2}{3}$ is the same as $\frac{5}{9} + \frac{6}{9}$. Now, add:											
	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$						
+	<u>1</u> 9	$\frac{1}{9}$	$\frac{1}{9}$	<u>1</u> 9	$\frac{1}{9}$	<u>1</u> 9					
	<u>1</u> 9	$\frac{1}{9}$	<u>1</u> 9	$\frac{1}{9}$	$\frac{1}{9}$						
Step 4											
He	Hence, $\frac{5}{9} + \frac{2}{3} = \frac{11}{9}$.										


(5) c. 6

Step 1

To find the number of houses having satellite TV, find $\frac{3}{7}$ of 14.

Step 2

Let us draw a rectangle and mark the whole length of the rectangle by 14. Let us now divide it in 7 equal parts.

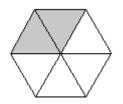
Step 3

We find that 7×1 part = 14So, 1 part $= 14 \div 7 = 2$

Step 4

Thus, we can say that the value of one part is 2.

Therefore,
$$rac{3}{7}$$
 of $14=3 imes 2=6$


Step 5

Hence, 6 of these houses have satellite TV.

(6) 2 6

Step 1

According to the question, we have been asked to find the fraction of the shaded part of the following image:

Step 2

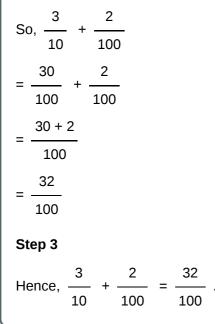
Total number of equal parts in the image = 6 As we can see, there are 2 shaded parts in the image.

Step 3

Fraction of the image that is shaded = $\frac{\text{Number of shaded parts}}{\text{Total number of parts of the image}}$ $= \frac{2}{6}$ **Step 4** Hence, the fraction of the image that is shaded is $\frac{2}{6}$.

Step 1

Firstly, to add the fractions we have to make the denominators of the fractions the same.


Since the denominator of $\frac{3}{10}$ is 10, thus multiply the fraction by 10, to get an equivalent

fraction with denominator 100.

So,
$$\frac{3 \times 10}{10 \times 10} = \frac{30}{100}$$

Step 2

Now, add the fractions. Since, the denominators of both the fractions are the same, so add the numerators and keep the denominator the same.

(8) $2\frac{10}{11}$

Step 1

To find the amount of sugar used by 4 batches of cookies, multiply the amount of sugar needed to make 1 batch of cookies by 4. Thus, find $4\times\frac{8}{11}$.

Step 2

4 can be written as $\frac{4}{1}$. Now, multiply the numerators and the denominators to find the product. Thus, $4 \times \frac{8}{11} = \frac{4}{1} \times \frac{8}{11} = \frac{4 \times 8}{1 \times 11} = \frac{32}{11}$. Now, Simplify the product: $\frac{32}{11} = 2\frac{10}{11}$. Step 3 Hence, Logan would use $2\frac{10}{11}$ of a cup of sugar to make 4 batches of cookies.

(9)

1

Step 1

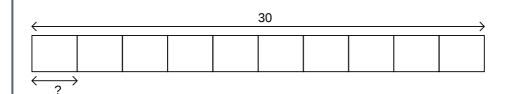
Fraction of the book read by Mason in two days = $\frac{6}{11}$

Fraction of the book read by Mason on the first day = $\frac{5}{11}$

Step 2

Fraction of the book read by Mason on the second day = Fraction of the book read by Mason in two days – Fraction of the book read by Mason on the first day

$$= \frac{6}{11} - \frac{5}{11}$$
$$= \frac{6 - 5}{11}$$
$$= \frac{1}{11}$$


(10) 15

Step 1

To find the number of students who come to school by bus, find $\frac{5}{10}$ of 30.

Step 2

Let us draw a rectangle and mark the whole length of the rectangle by 30. Let us now divide it in 10 equal parts.

Step 3

We find that 10×1 part = 30So, 1 part = $30 \div 10 = 3$

Step 4

Thus, we can say that the value of one part is 3.

Therefore,
$$\displaystyle rac{5}{10}$$
 of $\displaystyle 30=5 imes 3=15$

Step 5

Hence, 15 students come to school by bus.

© 2021 Edugain (www.edugain.com). All Rights Reserved Many more such worksheets can be generated at www.edugain.com